3.2.1 \(\int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{\sqrt {a+a \cos (c+d x)}} \, dx\) [101]

Optimal. Leaf size=159 \[ \frac {\sqrt {2} (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {4 (5 A-7 B) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 (5 A-B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d} \]

[Out]

(A-B)*arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)-4/15*(5*A-7*B)*sin(d*x+
c)/d/(a+a*cos(d*x+c))^(1/2)+2/5*B*cos(d*x+c)^2*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/15*(5*A-B)*sin(d*x+c)*(a+
a*cos(d*x+c))^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.25, antiderivative size = 159, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3062, 3047, 3102, 2830, 2728, 212} \begin {gather*} \frac {2 (5 A-B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{15 a d}-\frac {4 (5 A-7 B) \sin (c+d x)}{15 d \sqrt {a \cos (c+d x)+a}}+\frac {\sqrt {2} (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 B \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[2]*(A - B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d) - (4*(5*A - 7
*B)*Sin[c + d*x])/(15*d*Sqrt[a + a*Cos[c + d*x]]) + (2*B*Cos[c + d*x]^2*Sin[c + d*x])/(5*d*Sqrt[a + a*Cos[c +
d*x]]) + (2*(5*A - B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(15*a*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2830

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*S
in[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m
, -2^(-1)]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3062

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*
(m + n + 1))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*c
*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] &&
(IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3102

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[1/(
b*(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x) (A+B \cos (c+d x))}{\sqrt {a+a \cos (c+d x)}} \, dx &=\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {\cos (c+d x) \left (2 a B+\frac {1}{2} a (5 A-B) \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx}{5 a}\\ &=\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 \int \frac {2 a B \cos (c+d x)+\frac {1}{2} a (5 A-B) \cos ^2(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{5 a}\\ &=\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 (5 A-B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}+\frac {4 \int \frac {\frac {1}{4} a^2 (5 A-B)-\frac {1}{2} a^2 (5 A-7 B) \cos (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx}{15 a^2}\\ &=-\frac {4 (5 A-7 B) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 (5 A-B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}+(A-B) \int \frac {1}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=-\frac {4 (5 A-7 B) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 (5 A-B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}-\frac {(2 (A-B)) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {2} (A-B) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {4 (5 A-7 B) \sin (c+d x)}{15 d \sqrt {a+a \cos (c+d x)}}+\frac {2 B \cos ^2(c+d x) \sin (c+d x)}{5 d \sqrt {a+a \cos (c+d x)}}+\frac {2 (5 A-B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{15 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.36, size = 94, normalized size = 0.59 \begin {gather*} \frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (15 (A-B) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+(-10 A+29 B+2 (5 A-B) \cos (c+d x)+3 B \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{15 d \sqrt {a (1+\cos (c+d x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(A + B*Cos[c + d*x]))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*(15*(A - B)*ArcTanh[Sin[(c + d*x)/2]] + (-10*A + 29*B + 2*(5*A - B)*Cos[c + d*x] + 3*B*Cos
[2*(c + d*x)])*Sin[(c + d*x)/2]))/(15*d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [A]
time = 0.28, size = 240, normalized size = 1.51

method result size
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 B \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-20 \sqrt {2}\, \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (A +B \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+15 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a A -15 \sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a B +30 B \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{15 a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(240\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/15*cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(24*B*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2)*si
n(1/2*d*x+1/2*c)^4-20*2^(1/2)*a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*(A+B)*sin(1/2*d*x+1/2*c)^2+15*2^(1/2)*ln(
4/cos(1/2*d*x+1/2*c)*(a^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+a))*a*A-15*2^(1/2)*ln(4/cos(1/2*d*x+1/2*c)*(a^(1/
2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)+a))*a*B+30*B*2^(1/2)*(sin(1/2*d*x+1/2*c)^2*a)^(1/2)*a^(1/2))/a^(3/2)/sin(1/2
*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 927957 vs. \(2 (138) = 276\).
time = 18.75, size = 927957, normalized size = 5836.21 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/1680*(28*(20*(cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c)^3 + 8*(cos(d*x + c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c)
 + 1)*sin(3/2*d*x + 3/2*c)^3 - 20*cos(5/2*d*x + 5/2*c)^3*sin(d*x + c) + 2*(15*(log(cos(1/2*d*x + 1/2*c)^2 + si
n(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*s
in(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 15*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2
*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*
x + c)^2 + 30*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 4*(cos(d*x + c)^2 + sin
(d*x + c)^2 + 2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) - 20*cos(3/2*d*x + 3/2*c)*sin(d*x + c) + 15*log(cos(1/2
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 15*log(cos(1/2*d*x + 1/2*c)^2 + sin(1
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(5/2*d*x + 5/2*c)^2 + 30*((log(cos(1/2*d*x + 1/2*c)^2 + si
n(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*s
in(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + (log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*
x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x +
 c)^2 + 2*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x
 + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + log(cos(1/2*d*x + 1/2*c)^2
+ sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 -
 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3/2*d*x + 3/2*c)^2 + 2*(10*(cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c)^3 + 4*(co
s(d*x + c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c)^3 - 10*cos(5/2*d*x + 5/2*c)^3*sin(d*x
 + c) + (15*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d
*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 15*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 30*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c)
+ 1))*cos(d*x + c) + 4*(cos(d*x + c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) - 20*cos(3/
2*d*x + 3/2*c)*sin(d*x + c) + 15*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)
+ 1) - 15*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(5/2*d*x + 5/2
*c)^2 + 15*((log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d
*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + (log(cos(1/2*d*x + 1/2*
c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c
)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2
*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1)
)*cos(d*x + c) + log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1
/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3/2*d*x + 3/2*c)^2 + (15*(log(co
s(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin
(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 15*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*
d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 30*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)
+ 4*(cos(d*x + c)^2 + sin(d*x + c)^2 + 7*cos(d*x + c) + 6)*sin(3/2*d*x + 3/2*c) - 10*cos(5/2*d*x + 5/2*c)*sin(
d*x + c) + 15*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 15*log(cos(1
/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(5/2*d*x + 5/2*c)^2 + 15*((log(co
s(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin
(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + (log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x
+ 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x
 + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*...

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 166, normalized size = 1.04 \begin {gather*} \frac {4 \, {\left (3 \, B \cos \left (d x + c\right )^{2} + {\left (5 \, A - B\right )} \cos \left (d x + c\right ) - 5 \, A + 13 \, B\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right ) - \frac {15 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/30*(4*(3*B*cos(d*x + c)^2 + (5*A - B)*cos(d*x + c) - 5*A + 13*B)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c) - 15*
sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x
 + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \cos ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))*cos(c + d*x)**2/sqrt(a*(cos(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [A]
time = 0.57, size = 183, normalized size = 1.15 \begin {gather*} \frac {\frac {15 \, \sqrt {2} {\left (A \sqrt {a} - B \sqrt {a}\right )} \log \left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {15 \, \sqrt {2} {\left (A \sqrt {a} - B \sqrt {a}\right )} \log \left (-\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {4 \, \sqrt {2} {\left (12 \, B a^{\frac {9}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 10 \, A a^{\frac {9}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 10 \, B a^{\frac {9}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, B a^{\frac {9}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{a^{5} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{30 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/30*(15*sqrt(2)*(A*sqrt(a) - B*sqrt(a))*log(sin(1/2*d*x + 1/2*c) + 1)/(a*sgn(cos(1/2*d*x + 1/2*c))) - 15*sqrt
(2)*(A*sqrt(a) - B*sqrt(a))*log(-sin(1/2*d*x + 1/2*c) + 1)/(a*sgn(cos(1/2*d*x + 1/2*c))) + 4*sqrt(2)*(12*B*a^(
9/2)*sin(1/2*d*x + 1/2*c)^5 - 10*A*a^(9/2)*sin(1/2*d*x + 1/2*c)^3 - 10*B*a^(9/2)*sin(1/2*d*x + 1/2*c)^3 + 15*B
*a^(9/2)*sin(1/2*d*x + 1/2*c))/(a^5*sgn(cos(1/2*d*x + 1/2*c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^2\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^2*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^(1/2), x)

________________________________________________________________________________________